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SOCIAL OPTIMA IN MEAN FIELD
LINEAR-QUADRATIC-GAUSSIAN MODELS WITH MARKOV

JUMP PARAMETERS∗

BING-CHANG WANG† AND JI-FENG ZHANG‡

Abstract. This paper investigates social optima of mean field linear-quadratic-Gaussian (LQG)
control models with Markov jump parameters. The common objective of the agents is to minimize a
social cost—the cost average of the whole society. In the cost functions there are coupled mean field
terms. First, we consider the centralized case and get a parameterized equation of mean field effect.
Then, we design a set of distributed strategies by solving a limiting optimal control problem in an
augmented state space subject to the consistency requirement for mean field approximation. It is
shown that the set of distributed strategies is asymptotically team-optimal, and the asymptotically
optimal social cost value can be obtained explicitly. The optimal social average cost is compared
with the optimal individual cost in mean field games by virtue of the explicit expressions, and the
difference is further illustrated by a numerical example.
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1. Introduction. In recent years, mean field games and control have drawn
a lot of attention from the control community [11]. Mean field models have broad
backgrounds in many areas including economics, finance, communication engineering,
biology, and medicine [12, 9, 7, 3]. Such models have been investigated by researchers
from a variety of perspectives [16, 21, 42, 44, 37]. In mean field models, each agent is
affected by the average interaction of all the other agents, while the individual influ-
ence of each agent is negligible. From the relationship between population macroscopic
behavior and individual behavior, one can get that the population aggregate (mean
field) effect satisfies a fixed-point equation. Then by tackling the fixed-point equation
and the single-agent optimal control problem, decentralized asymptotic Nash equilib-
ria are obtained [17, 22, 37]. For more literature, readers are referred to [22] for mean
field games with stochastic time-averaged costs, [15, 28, 38] for mean field models
with a major player, [40] for mean field Stackelberg games, [14] for mean field games
with model uncertainty, [36] for application to dynamic production output adjustment
with sticky prices, and [43, 41, 4, 6] for various control examples of multiagent systems.

In practical financial markets, ecological systems, and social systems, the am-
bient environment is constantly changing. For instance, the change rates of prices
in a financial market may be very different for different time slots. A powerful tool
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depicting abrupt environmental changes is the Markov jump model [25, 8]. Wang and
Zhang [37, 38, 39] investigated mean field games for multiagent systems with Markov
jump parameters and gave distributed asymptotical Nash equilibrium strategies.

This paper investigates social optima in mean field linear-quadratic-Gaussian
(LQG) control with Markov jump parameters, where the common objective is to
minimize the cost average of all the agents. If we take all the agents as a society, then
the cost average is a social cost. This problem is usually regarded as a type of team
decision problem which has a long research history [26, 30, 13, 33, 34] but most of the
works focus on static decisions. In team decision problems, all the agents cooperate
to achieve a common objective, while different agents have different measurements or
information structures [13]. A team-optimal strategy is necessarily person-by-person
optimal; under some convexity conditions, the person-by-person optimal strategy is
also team-optimal [1]. Tembine et al. [32] considered the asymptotic behavior for
mean field Markov team decision problems and focused on seeking the stationary pol-
icy which belongs to a static optimization problem. Huang, Caines, and Malhame [18]
investigated social optima in mean field LQG control problems and gave centralized
and decentralized team-optimal solutions. Compared with [32, 18], we will study a
kind of dynamic team decision problems with Markov jump parameters, which are
closely related to practical backgrounds [25, 8].

Different from previous works [16, 17, 18, 37, 38, 39], dynamics and costs of all the
agents in this paper are driven by a common continuous-time Markov chain, which
is a form of common noise [5]. In the previous works, the parameters of agents are
constants (random variables) or a sequence of independent Markov chains and the
mean field effect is a deterministic function which can be calculated by tackling a
fixed-point equation. In contrast, the mean field effect in our model is a stochastic
process depending on the Markov jump parameter due to the impact of the common
random parameter. Thus, the above approach cannot be entirely applied to handle
the problem in this paper. Also, the socially optimal problem involving optimiza-
tion of the average of individual costs has very high computational complexity. We
achieve the control synthesis by the parametric approach and the state space aug-
mentation. By analyzing the centralized strategy, we get a parameterized equation of
mean field effect and a transformation of the original social optimum problem. From
these we construct an optimal control problem with the indefinite state weight in the
augmented state space. By solving this problem with the consistency requirement for
mean field approximation, we obtain a set of consistency equations, from which a set
of distributed strategies is designed. By constructing stochastic Lyapunov functions,
we show that the closed-loop system is uniformly stable, and the set of distributed
strategies is asymptotically team-optimal. Furthermore, we provide an explicit expres-
sion of the asymptotically optimal social cost by ergodic limiting theory of Markov
chains. Meanwhile, we get an explicit expression of the optimal individual cost in
mean field games with the help of the results in our previous works [35, 37]. By
comparing these two expressions, one can obtain the difference of the optimal average
costs within team and game formulations, which shows the efficiency of cooperation.
This is further illustrated by a numerical example.

The organization of the paper is as follows. Section 2 formulates the socially
optimal team problem of mean field LQG models with Markov jump parameters.
Section 3 provides the form of mean field effect and a transformation of the social
optimum problem. Section 4 presents a set of distributed strategies by solving a
limiting optimal control problem subject to the consistency requirement for mean field
approximation. Section 5 shows the asymptotic optimality of distributed strategies.
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Section 6 gives the asymptotically optimal social cost and the optimal individual cost
in mean field games. Section 7 provides a numerical example to verify the result.
Section 8 concludes the paper.

The following notation will be used in the paper. ‖ · ‖ denotes the Euclidean
vector norm or matrix norm induced by the Euclidean vector norm; In denotes an
n-dimensional identity matrix. For a given matrix A, AT denotes its transpose, and
A > 0 means that A is positive definite. For any vector x with proper dimensions
and symmetric matrix Q ≥ 0, ‖x‖Q = (xTQx)1/2. For an n-dimensional matrix
P , λmin(P ) denotes the minimum eigenvalue of P , and λmax(P ) denotes maximum
eigenvalue of P . IB denotes the indicator function of set B. Cb([0,∞),Rn) denotes
the class of n-dimensional bounded continuous functions in [0,∞).

2. Problem formulation. Consider a multiagent system of the form

dxi(t) = Aθ(t)xi(t)dt+Bθ(t)ui(t)dt+ h(t)dt

+Dθ(t)dWi(t), 1 ≤ i ≤ N,(2.1)

where xi ∈ Rn and ui ∈ Rr are the state and input of the ith agent, and {Wi(t), 1 ≤
i ≤ N} is a family of independent d-dimensional Brownian motions. The underlying
filtered probability space is (Ω,F , (Ft)t≥0, P ), where (Ft)t≥0 is a collection of non-
decreasing σ-algebras. h ∈ Cb([0,∞),Rn) is a deterministic external disturbance,
reflecting the impact of the environment. {θ(t)} is a continuous-time Markov chain
taking value in S = {1, 2, . . . ,m} with transition rate matrix (infinitesimal generator)
Λ = {λij , i, j = 1, . . . ,m}. The cost of the ith agent is

Ji(u) = lim sup
T→∞

1

T
E

∫ T

0

{∥∥xi(t)− Φ[x(N)(t)]
∥∥2

Qθ(t)
+ ‖ui(t)‖2Rθ(t)

}
dt,(2.2)

where Qj ≥ 0 and Rj > 0, j = 1, . . . ,m. Φ : x 7→ Hx + α, H ∈ Rn×n, α ∈ Rn.

x(N)(t) = 1
N

∑N
j=1 xj(t), and u = {u1, . . . , ui, . . . , uN}.

The main goal is to seek a set of distributed strategies that optimizes the social
(average) cost J (N)(u) for the system (2.1)–(2.2), where

J (N)(u) =
1

N

N∑
i=1

Ji(u).

Specifically, each agent makes decisions to minimize the social cost J (N) over the
distributed strategy set

Ud,i =

{
ui | ui(t) is adapted to σ(xi(0),Wi(s), θ(s), s ≤ t)

and lim sup
T→∞

1

T
E

∫ T

0

‖ui(t)‖2dt <∞

}
, i = 1, . . . , N.

This is a type of team decision problem with the common objective J (N). As a
contrast, we introduce the game problem: agent i makes decisions to minimize the
individual cost Ji over the distributed strategy set Ud,i, i = 1, . . . , N .

Remark 2.1. The social optimum is a kind of team problem where all the agents
cooperate to minimize the cost average of the society. On the contrary, the (noncoop-
erative) game involves competitive agents; each agent is only concerned with its own
cost.
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For the convenience of reference, we list some assumptions as follows:
(A1) xi(0), 1 ≤ i ≤ N , are independent random variables; {xi(0)}, {Wi(t),

1 ≤ i ≤ N} and {θ(t)} are independent of each other. Exi(0) = x0, 1 ≤ i ≤ N ;
max1≤i≤N E‖xi(0)‖2 <∞.

(A2) The Markov jump system

(2.3) dx(t) = Aθ(t)x(t)dt+Bθ(t)u(t)dt

is mean square stabilizable.1

3. Mean field approximation and transformation of socially optimal
problems. In this section, we first get asymptotic behavior of population state aver-
age x(N) from heuristic derivation. Next, we provide a transformation of the original
social optimum problem by analyzing an open-loop centralized strategy.

3.1. Heuristic derivation of mean field effect. To design the distributed
strategy, the key step is to analyze the asymptotic behavior of population state aver-
age x(N). In the previous works on mean field models with time-invariant parameters,
x(N) in the closed-loop system converges to a deterministic function, which is called
the mean field effect. In contrast, for the model (2.1)–(2.2), the mean field effect
(population aggregate behavior) is stochastic due to the impact of the random pa-
rameter. Specifically, x(N)(t) collapses into a stochastic process depending on the
jump parameter θ(s), s ≤ t, as the number of agents grows to infinity.

We now get the form of the mean field effect by heuristic examination of x(N)

under centralized strategies. If each agent can get the state information of all agents,
then we can take the problem (2.1)–(2.2) as the standard Markov jump LQG optimal
control problem. By solving a set of coupled dynamic programming equations, one
can obtain a centralized feedback control for the each agent [25, 2]:

ui(t) = P̃θ(t)xi(t) +
∑
j 6=i

P̄θ(t)xj(t) + s̄θ(t)(t),

where 1 ≤ i ≤ N , P̃ (·), P̄ (·) ∈ Rn×n, and s̄(·) ∈ Rn. In the control strategy above,
we suppose that the coefficient matrix of each state only depends on θ(t). The main
reason is as follows: (i) for the single-agent Markov jump optimal control problem,
the control gain is only dependent on θ(t) [25]; (ii) as θ(t) ≡ j0, the original problem is
reduced into the standard LQG optimal control problem, and in this case the control
gain is a constant matrix [2]. Since there is a time-varying term h(t) in the state
equation (2.1), s̄ is dependent not only on θ(t) but also on t explicitly. We can get
s̄ by solving a set of coupled differential equations. Substituting the above strategy
into the state equation (2.1) leads to the closed-loop equation:

dxi(t) = (Aθ(t) +Bθ(t)P̃θ(t))xi(t)dt+Bθ(t)
∑
j 6=i

P̄θ(t)xj(t)dt+Bθ(t)s̄θ(t)(t)

+h(t)dt+Dθ(t)dWi(t), 1 ≤ i ≤ N.

1 Assumption (A2) holds if and only if for any given positive definite matrices N1, . . . , Nm, there
exists a unique set of positive definite solutions {Pj , j = 1, . . . ,m} to the following coupled Riccati
equations: AT

j Pj + PjAj − PjBjB
T
j Pj +

∑m
k=1 λjkPk = −Nj , j = 1, . . . ,m. See [25, 19] for more

conditions that ensure mean square stabilizability of the system (2.3).
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Summing up the above equation from i = 1 to N , and dividing by N , we get

dx(N)(t) = [Aθ(t) +Bθ(t)(P̃θ(t) + (N − 1)P̄θ(t))]x
(N)(t)dt+Bθ(t)s̄θ(t)(t)

+h(t)dt+ d

 1

N

N∑
j=1

Dθ(t)Wj(t)

 .(3.1)

Owing to the coupling coefficient between two agents being 1/N , we can roughly
assume that the magnitude of P̄θ(t) is 1/N , and (N − 1)P̄θ(t) converges to a matrix-
valued function as N →∞. Notice that

1

N

N∑
j=1

Dθ(t)Wj(t)→ 0 a.s.

Thus, letting N →∞, from (3.1) the mean field effect satisfies

(3.2) dz(t) = Mθ(t)z(t)dt+ sθ(t)(t)dt, z(0) = x0,

where M(·) ∈ Rn×n and s(·) ∈ Rn are parameters to be determined. It is worth
pointing out that the above form of the mean field effect is obtained only by heuristic
arguments and the relevant hypotheses need to be verified further.

3.2. Transformation of socially optimal problems. Let

Uc =
{
ui|ui(t) is adapted to σ{xi(0),Wi(s), θ(s), s ≤ t, i = 1, . . . , N}

}
be the centralized strategy set. Then, a so-called team-optimal solution is referred
to a set of strategies u∗ satisfying J (N)(u∗) ≤ J (N)(u) for any u. Notice that all the
agents share a common social cost. Seeking the team-optimal centralized strategy is
equivalent to solving a multivariate optimal control problem.

As we know, the team-optimal strategy is necessarily person-by-person optimal
[1]. We provide a transformation of problem (2.1)–(2.2) by using an argument similar
to Lemma 3.5 in [18].

Lemma 3.1. If û = {ûi, i = 1, . . . , N |ûi ∈ Uc} is the team-optimal strategy of
problem (2.1)–(2.2), then ûi is necessarily an optimal strategy of the following control
problem:

(P0) dxi(t) = Aθ(t)xi(t)dt+Bθ(t)ui(t)dt+ h(t)dt+ Dθ(t)dWi(t), 1 ≤ i ≤ N, J0
i (ui)

= lim sup
T→∞

1

T
E

∫ T

0

L(xi(t), x̂
(N)
−i (t), ui(t))dt,

where J0
i (ui) is the cost to be minimized over ui ∈ Uc, x̂(N)

−i
∆
= 1

N

∑
j 6=i x̂j, and

L(xi, x̂
(N)
−i , ui) = xTi

[(
I − H

N

)T
Qθ

(
I − H

N

)
+

(N − 1)HTQθH

N2

]
xi

− 2(Hx̂
(N)
−i + α)TQθ

(
I − H

N

)
xi

− 2

{[
I −

(
1− 1

N

)
H
]
x̂

(N)
−i −

(
1− 1

N

)
α

}T
QθHxi + ‖ui‖2Rθ .(3.3)
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The above lemma shows that the terms in J (N) affected by ui appear only in
(3.3) when û−i = (û1, . . . , ûi−1, ûi+1, . . . , ûN ) is given. By analyzing (3.3) we obtain

the cost for agent i only depends on xi, ui and x̂
(N)
−i , where x̂

(N)
−i does not change

with individual strategy ui. Thus, to get the solution of the social optimum problem
within population limit by mean field approximation, we can first solve an optimal
tracking problem with an unknown exogenous signal. Lemma 3.1 acts on guidance of
constructing distributed control strategies.

4. Distributed strategy design. From the previous heuristic derivation, as
N → ∞, x(N)(t) may be approximated by a stochastic process z(t), which depends
on θ(t) and satisfies (3.2). By Lemma 3.1, we construct the following auxiliary optimal
control problem:

dxi(t) = Aθ(t)xi(t)dt+Bθ(t)ui(t)dt+ h(t)dt+Dθ(t)dWi(t), 1 ≤ i ≤ N,

J1
i (ui) = lim sup

T→∞

1

T
E

∫ T

0

L1(xi(t), z(t), ui(t))dt,

where

L1(xi, z, ui) = xTi Qθxi − 2(Hz + α)TQθxi − 2 [(In −H)z − α]
T
QθHxi + ‖ui‖2Rθ ,

dz(t) = Mθ(t)z(t)dt+ sθ(t)(t)dt.(4.1)

Taking (xi, z) as a 2n-dimensional state, the above problem can be rewritten as
follows:

(P1) d

(
xi(t)
z(t)

)
=

(
Aθ(t) 0

0 Mθ(t)

)(
xi(t)
z(t)

)
dt+

(
Bθ(t)

0

)
ui(t)dt

+

(
h(t)
sθ(t)(t)

)
dt+

(
Dθ(t)

0

)
dWi(t), 1 ≤ i ≤ N,(4.2)

J1
i (ui) = lim sup

T→∞

1

T
E

∫ T

0

{
(xi(t) z(t))

(
Qθ(t) HQ

θ(t)

HQ
θ(t) 0

)(
xi(t)
z(t)

)

−
[
2αTQθ(t)(In −H), 0

]( xi(t)
z(t)

)
+ ‖ui(t)‖2Rθ(t)

}
dt,(4.3)

where
HQ
j

∆
= HTQjH −HTQj −QjH, j = 1, . . . ,m.

Let

Āj =

(
Aj 0
0 Mj

)
, B̄j =

(
Bj
0

)
, D̄j =

(
Dj

0

)
.

We introduce the coupled algebra Riccati equations

(4.4) ĀTj Kj +KjĀj +

m∑
l=1

λjlKl −KjB̄jR
−1
j B̄Tj Kj +

(
Qj HQ

j

HQ
j 0

)
= 0

and the coupled ordinary differential equations

(4.5)
drj(t)

dt
+GTj rj(t) +

m∑
l=1

λjlrl(t) +Kj

(
h(t)
sj(t)

)
− [αTQj(In −H), 0]T = 0,
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where
Gj

∆
= Āj − B̄jR−1

j B̄Tj Kj , j = 1, . . . ,m.

If the corresponding conditions in Lemma A.1 are satisfied, then the optimal
control law of problem (P1) is given by

(4.6) ui(t) = −R−1
θ(t)B̄

T
θ(t)[Kθ(t)(x

T
i (t), zT (t))T + rθ(t)(t)].

Substituting the control law (4.6) into the dynamic equation (4.2), we get

d

(
xi(t)
z(t)

)
= Gθ(t)

(
xi(t)
z(t)

)
dt+ B̄θ(t)R

−1
θ(t)B̄

T
θ(t)rθ(t)(t)dt

+

(
h(t)
sθ(t)(t)

)
dt+

(
Dθ(t)

0

)
dWi(t).(4.7)

Let

Gj =

(
Gj,1 Gj,2
Gj,3 Gj,4

)
, j = 1, . . . ,m.

Then, from (4.7) it follows that

dxi(t) = Gθ(t),1xi(t)dt+Gθ(t),2z(t)dt

−Bθ(t)R−1
θ(t)B̄

T
θ(t)rθ(t)(t)dt+ h(t)dt+Dθ(t)dWi(t).

Summing up the above equation from i = 1 to N , and then, dividing by N , we have

dx(N)(t) = Gθ(t),1x
(N)(t)dt+Gθ(t),2z(t)dt−Bθ(t)R−1

θ(t)B̄
T
θ(t)rθ(t)(t)dt

+h(t)dt+
1

N

N∑
i=1

Dθ(t)dWi(t).(4.8)

From the law of large numbers, it follows that

E
∥∥∥ 1

N

N∑
j=1

Dθ(t)Wj(t)
∥∥∥2

→ 0.

By the mean field methodology [17, 37], (4.8) in the infinite population limit should be
consistent with (3.2) in the sense that as N →∞, x(N) in (4.8) can be approximated
by z in (3.2). Thus, to proceed with the design of distributed strategies, we impose
the following consistency condition:

Gθ(t),1 +Gθ(t),2 = Mθ(t),(4.9)

h(t)−Bθ(t)R−1
θ(t)B̄

T
θ(t)rθ(t)(t) = sθ(t)(t).(4.10)

Combining (4.4), (4.5), (4.9), and (4.10) leads to the system of consistency equations:
(4.11)

ĀTj Kj +KjĀj +
∑m
l=1 λjlKl −KjB̄jR

−1
j B̄Tj Kj +

(
Qj HQ

j

HQ
j 0

)
= 0,

Gj,1 +Gj,2 = Mj ,

drj(t)
dt +GTj rj(t) +

∑m
l=1 λjlrl(t) +Kj

(
h(t)
sj(t)

)
−
(

(In −HT )Qjα
0

)
= 0,

h(t)−BjR−1
j B̄Tj rj(t) = sj(t), j = 1, . . . ,m.
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Definition 4.1. (Kj ,Mj , rj(t), sj(t), j = 1, . . . ,m) is called a stabilizing solution
to (4.11) if (Kj ,Mj , rj(t), sj(t), j = 1, . . . ,m) satisfies (4.11), and for any 1 ≤ j ≤
m, rj(t) ∈ Cb([0,∞),Rn), the system

(4.12) dy(t) = Gθ(t)y(t)dt

is mean-square stable.

Remark 4.1. If for any initial value y0 we have E‖y(t)‖2 → 0(t → ∞), then the
system (4.12) is mean-square stable. By [19, 10], the system (4.12) is mean-square
stable if and only if for any positive definite matrix Nj , j = 1, . . . ,m, the equation

PjGj +GTj Pj +

m∑
k=1

λjkPk = −Nj

admits a unique set of positive definite solutions Pj , j = 1, . . . ,m.

We now examine under what conditions there exists a stabilizing solution to
(4.11). Note (

In 0
)
Gj

(
In
In

)
= Gj,1 +Gj,2

and (
In 0

)
Āj

(
In
In

)
= Aj .

Equation (4.9) can be equivalently transformed into

(4.13) Aj −
(
In 0

)
B̄jR

−1B̄Tj Kj

(
In
In

)
= Mj , j = 1, . . . ,m.

Let

Kj =

(
Kj,1 Kj,2

Kj,3 Kj,4

)
.

Then, we have

(
In 0

)
B̄jR

−1
j B̄Tj Kj

(
In
In

)
= BjR

−1
j BTj (Kj,1 +Kj,2).

This together with (4.13) implies that (4.9) is equivalent to

(4.14) Mj = Aj −BjR−1
j BTj (Kj,1 +Kj,2).

By partitioning the matrices Āj and Kj , (4.4) can be transformed into(
ATj Kj,1 ATj Kj,2

MT
j Kj,3 MT

j Kj,4

)
+

(
Kj,1Aj Kj,2Mj

Kj,3Aj Kj,4Mj

)
+

( ∑m
l=1 λjlKl,1

∑m
l=1 λjlKl,2∑m

l=1 λjlKl,3

∑m
l=1 λjlKl,4

)
+

(
Qj HQ

j

HQ
j 0

)

−
(
Kj,1BjR

−1
j BTj Kj,1 Kj,1BjR

−1
j BTj Kj,2

Kj,3BjR
−1
j BTj Kj,1 Kj,3BjR

−1
j BTj Kj,2

)
= 0.
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Substituting (4.14) into the above equation yields the following four matrix equations:

ATj Kj,1 +Kj,1Aj +

m∑
l=1

λjlKl,1 −Kj,1BjR
−1
j BTj Kj,1 +Qj = 0;(4.15)

ATj Kj,2 +Kj,2

[
Aj −BjR−1

j BTj (Kj,1 +Kj,2)
]

+

m∑
l=1

λjlKl,2

−Kj,1BjR
−1
j BTj Kj,2 +HQ

j = 0;(4.16)

[
Aj −BjR−1

j BTj (Kj,1 +Kj,2)
]T
Kj,3 +Kj,3Aj +

m∑
l=1

λjlKl,3

−Kj,3BjR
−1
j BTj Kj,1 +HQ

j = 0;(4.17)

MT
j Kj,4 +Kj,4Mj +

m∑
l=1

λjlKl,4 −Kj,3BjR
−1
j BTj Kj,2 = 0.(4.18)

In what follows, we will analyze the existence of solutions to (4.15)–(4.18). From
assumption (A2) and [19, Theorem 5], (4.15) has a unique positive definite solution
and the system

(4.19) dy(t) = (Aθ(t) −Bθ(t)R−1
θ(t)B

T
θ(t)Kθ(t),1)y(t)dt

is mean-square stable. By direct computations, (4.16) can be equivalently transformed
to

(Aj −BjR−1
j BTj Kj,1)TKj,2 +Kj,2(Aj −BjR−1

j BTj Kj,1) +

m∑
l=1

λjlKl,2

−Kj,2BjR
−1
j BTj Kj,2 +HQ

j = 0, j = 1, . . . ,m.(4.20)

Since the system (4.19) is mean-square stable, then it is also mean-square stabilizable.

If HQ
j , j = 1, . . . ,m are positive definite, then by Remark 4.1, (4.20) has a unique set

of positive definite solutions Kj,2, j = 1, . . . ,m, and the system

(4.21) dy(t) =
[
Aθ(t) −Bθ(t)R−1

θ(t)B
T
θ(t)

(
Kθ(t),1 +Kθ(t),2

)]
y(t)dt

is mean-square stable. However, Kj,2 is not necessarily positive definite or even
symmetric since it is not a diagonal block. Hence, we do not have to require that
HQ
j , j = 1, . . . ,m, are positive definite.

Let’s look at the following example.

Example 4.1. Take the parameters in (2.1)–(2.2) as follows. A1 = 0.2, A2 = 0.8,
Bj = Qj = Rj = 1, j = 1, 2, H = 0.25,

Λ =

(
−1 1
1 −1

)
.

In this case, HQ
j = −0.4375 < 0. From the computation with MATLAB, the

(maximal) solution to (4.15) is K1,1 = 1.4251,K2,1 = 1.8859, and the (maximal)
solution to (4.16) is K1,2 = −0.2012,K2,2 = −0.2161. It can be verified that
the system (4.19) is mean-square stable. Meanwhile, by solving (4.18), we have
K1,4 = 0.07595,K2,4 = 0.08054. It can be verified that both K1 and K2 are pos-
itive definite.
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For further analysis, we introduce the following assumption:
(A3) There exists a set (K1,2, . . . ,Km,2) satisfying (4.20) such that the system

(4.21) is mean-square stable.

Remark 4.2. From [23], assumption (A3) holds if there exists a K̄2 =
(K1,2, . . . ,Km,2) such that Rj(K̄2) > 0, where

Rj(K̄2) = (Aj −BjR−1
j BTj Kj,1)TKj,2 +Kj,2(Aj −BjR−1

j BTj Kj,1) +

m∑
l=1

λjlKl,2

−Kj,2BjR
−1
j BTj Kj,2 +HQ

j , j = 1, . . . ,m.

In this case, Kj,2 is taken as the maximal solution such that the system (4.21) is mean-
square stable. The so-called maximal solution is referred to as a solution (P1, . . . , Pm)
to (4.21) if for any (P̄1, . . . , P̄m) with Rj(P̄1, . . . , P̄m) ≥ 0, it holds that Pj − P̄j ≥ 0.

On the other hand, if HQ
j ≥ 0, then (A3) holds necessarily.

Note that (4.17) can be deformed equivalently to

(Aj −BjR−1
j BTj Kj,1)TKj,3

+Kj,3(Aj −BjR−1
j BTj Kj,1) +

m∑
l=1

λjlKl,3

−KT
j,2BjR

−1
j BTj Kj,3 +HQ

j = 0.(4.22)

Compared with (4.20), (4.22) holds when Kj,3 is taken identically as Kj,2. Hence, the
solution Kj,2 to (4.16) is also a solution to (4.17). Last, noticing that the system (4.21)
is mean-square stable, the coupled Lyapunov equation (4.18) has a unique symmetric
solution Kj,4.

So far, we have shown that under assumptions (A2)–(A3) there exists a set of
solutions to (4.15)–(4.18).

Theorem 4.2. Under assumptions (A2)–(A3), (4.4) and (4.9) admit a set of
solutions {Kj, Mj , j = 1, . . . ,m}, and the system (4.12) is mean-square stable.

Proof. We only need to prove that the system (4.12) is stable in the mean-square
sense. See Appendix B for the proof.

We now provide that there exists a unique set of rj(t), sj(t), j = 1, . . . ,m, satis-
fying (4.5) and (4.10). Substituting (4.10) into (4.5) gives

(4.23)
drj(t)

dt
+(GTj −Sj)rj(t)+

m∑
l=1

λjlrl(t)+Kj

(
h(t)
h(t)

)
−
(

(In −HT )Qjα
0

)
= 0,

where

Sj =

(
Kj,2BjR

−1
j BTj 0

Kj,4BjR
−1
j BTj 0

)
, j = 1, . . . ,m.

Theorem 4.3. Under assumptions (A2)–(A3), (4.23) has a unique set of solutions
rj(t), j = 1, . . . ,m, in Cb([0,∞),R2n).

Proof. See Appendix B for the proof.

By Theorems 4.2 and 4.3, there exists a stabilizing solution to the system of con-
sistency equations (4.11). This implies that we can get a set of distributed strategies:

(4.24) ûi(t) = −R−1
θ(t)B

T
θ(t)[Kθ(t),1xi(t) +Kθ(t),2z(t) + rθ(t),1(t)], 1 ≤ i ≤ N,

where (Kj , rj , j = 1, . . . ,m) is a stabilizing solution to (4.11), and rj,1
∆
= (In, 0)rj .
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5. Analysis of asymptotic optimality. Applying the control strategy (4.24)
into the system (4.2) gives the closed-loop system equation

(5.1) d

(
x̂i(t)
ẑ(t)

)
= Gθ(t)

(
x̂i(t)
ẑ(t)

)
dt+

(
sθ(t)(t)
sθ(t)(t)

)
dt+

(
Dθ(t)

0

)
dWi(t).

We first provide the uniform stability of the closed-loop system.

Theorem 5.1. Under assumptions (A1)–(A3), there exists a constant C0 inde-
pendent of N such that the strategy (4.24) and the closed-loop system (5.1) satisfy

(5.2) max
1≤i≤N

lim sup
T→∞

1

T
E

∫ T

0

(‖x̂i(t)‖2 + ‖ẑ(t)‖2 + ‖ûi(t)‖2)dt ≤ C0.

Proof. See Appendix C for the proof.

Below we provide a result of the approximation error, which is useful to analyze
asymptotic optimality of the set of strategies (4.24).

Lemma 5.2. If assumptions (A1)–(A3) hold, then under (4.24), the closed-loop
system satisfies

(5.3) lim sup
T→∞

1

T
E

∫ T

0

∥∥∥x̂(N)(t)− ẑ(t)
∥∥∥2

dt = O

(
1

N

)
.

Proof. It follows from the closed-loop dynamics (5.1) that

dx̂(N)(t) = Gθ(t),1x̂
(N)(t)dt+Gθ(t),2ẑ(t)dt

+s(θ(t), t)dt+
1

N

N∑
i=1

Dθ(t)dWi(t),(5.4)

dẑ(t) = Mθ(t)ẑ(t)dt+ s(θ(t), t)dt.(5.5)

Notice that Mθ(t) = Gθ(t),1 +Gθ(t),2. Then, by (5.4) and (5.5) we have

(5.6) dξ(N)(t) = Gθ(t),1ξ
(N)(t)dt+Dθ(t)d

[
1

N

N∑
i=1

Wi(t)

]
,

where ξ(N)(t) = x̂(N)(t)− ẑ(t). Since {Wi(t), i = 1, . . . , N} is a family of independent
standard Brownian motions, then we have that for all t > s,

E
{ 1

N

N∑
i=1

[Wi(t)−Wi(s)]
∣∣Fs } = 0,

and

E

{[
1

N

N∑
i=1

(Wi(t)−Wi(s))

]T
1

N

N∑
i=1

(Wi(t)−Wi(s))
∣∣Fs}

=
1

N2
E

{ N∑
i=1

N∑
j=1

(Wi(t)−Wi(s))
T (Wj(t)−Wj(s))

∣∣Fs}

=
1

N2
E

{ N∑
i=1

(Wi(t)−Wi(s))
T (Wi(t)−Wi(s))

∣∣Fs} =
1

N
(t− s).
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Hence, the process 1
N

∑N
i=1Wi(t) is also a Brownian motion [20]. Let V1(j, x) =

xTPj,1x, j = 1, . . . ,m, x ∈ Rn, and A(N) denote the infinitesimal generator of
{θ(t), ξ(N)(t)} in (5.6). Then, from (B.2) it follows that

A(N)V1(j, x)

= lim
s→0

1

s

{
E[V1(θ(t+ s), ξ(N)(t+ s))|θ(t) = j, ξ(N)(t) = x]− V1(j, x)

}
=
∂V

∂x
(j, x)Gj,1x+

m∑
k=1

λjkV (k, x) +
1

N
tr(DT

j Pj,1Dj)

= xT (GTj,1Pj,1 + Pj,1Gj,1 + λjkPk,1)x+
1

N
tr(DT

j Pj,1Dj)

= −xTx+
1

N
tr(DT

j Pj,1Dj).

By Dynkin’s formula [29], we have

EA(N)V1(θ(t), ξ(N)(t)) =− E‖ξ(N)(t)‖2 +
1

N
tr(DT

j Pj,1Dj)

≤− 1

λ̄
EV1(θ(t), ξ(N)(t)) +

1

N
max

1≤j≤m
tr(DT

θ(t)Pθ(t),1Dθ(t)),

where λ̄ = max1≤j≤m(λmax(Pj,1)). This together with the comparison theorem
implies

EV1(θ(t), ξ(N)(t)) ≤ EV1(θ(0), ξ(N)(0))e−
t
λ̄ +

λ̄

N
max

1≤j≤m
tr(DT

j Pj,1Dj)(1− e−
t
λ̄ ).

Thus, we have

E[‖ξ(N)(t)‖2] ≤ 1

minj(λmin(Pj))

[ 1

N
max

1≤j≤m
‖Pj,1‖ max

1≤i≤N
E‖x̂i(0)‖2 exp(−t/λ̄)

+
λ̄

N
max

1≤j≤m
tr(DT

j Pj,1Dj)(1− exp(−t/λ̄))
]
,(5.7)

which implies

lim sup
T→∞

1

T
E

∫ T

0

∥∥∥x̂(N)(t)− ẑ(t)
∥∥∥2

dt

≤ lim sup
T→∞

1

T min1≤j≤m(λmin(Pj,1))

×
[ 1

N
max

1≤j≤m
‖Pj,1‖ max

1≤i≤N
E‖x̂i(0)‖2

∫ T

0

e−
t
λ̄ dt+

T λ̄

N
max

1≤j≤m
tr(DT

j Pj,1Dj)
]

=
λ̄

N minj(λmin(Pj,1))
max

1≤j≤m
tr(DT

j Pj,1Dj) = O

(
1

N

)
.

Now we are in a position to state the main result on asymptotic optimality of
distributed strategies.
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Theorem 5.3. If (A1)–(A3) hold, and I−H is nonsingular, then the set of strate-
gies (4.24) is an asymptotically team-optimal solution to the problem (2.1)–(2.2), i.e.,
for any u = {ui, i = 1, . . . , N |ui ∈ Uc},

(5.8) J (N)(u) ≥ J (N)(û)− ε,

where ε = O(1/
√
N).

Proof. See Appendix C for the proof.

6. Asymptotically optimal costs. In this section, we give closed forms of the
asymptotic optimal social cost and the optimal individual cost in mean field games.
The difference of the optimal costs within the team and game formulations can be
obtained from the two closed-form expressions.

We now give a closed-form expression of the optimal social average cost within
the population limit case.

Theorem 6.1. If (A1)–(A3) hold and I −H is nonsingular, then the asymptotic
optimal social cost is given by

lim
N→∞

inf
u∈Uc

J (N)(u) = lim
N→∞

J (N)(û)(6.1)

= lim sup
T→∞

1

T
E

∫ T

0

[
tr(Kθ,1DθD

T
θ ) + 2rTθ (t)[hT (t), sTθ (t)]T(6.2)

−‖B̄Tθ rθ(t)‖2R−1
θ

− ‖ẑ(t)‖2
HQθ

+ ‖α‖2Qθ
]
dt,(6.3)

where ẑ is determined by (5.1). Furthermore, if θ(t) is an ergodic Markov chain with
stationary distribution {πj , j = 1, . . . ,m}, then the optimal cost is given by

lim
N→∞

J (N)(û) =

m∑
j=1

πj lim sup
T→∞

1

T

∫ T

0

[
tr(Kj,1DjD

T
j )

+2rTj (t)[hT (t), sTj (t)]T − rTj,1(t)BjR
−1
j BTj rj,1(t) + ‖α‖2Qj

]
dt

−
m∑
j=1

lim sup
T→∞

1

T

∫ T

0

tr(HQ
j Z̄j(t))dt,(6.4)

where Z̄j(0) = pj(0)x0x
T
0 and

dZ̄j(t)

dt
= MjZ̄j(t) + Z̄j(t)M

T
j +

m∑
k=1

λkjZ̄k(t) + sj(t)z̄
T
j (t) + z̄j(t)s

T
j (t).

Here pj(t)
∆
= P (θ(t) = j) and

dz̄j(t)

dt
= Mj z̄j(t) +

m∑
k=1

λkj z̄k(t) + pj(t)sj(t), z̄j(0) = pj(0)x0.

Proof. From Lemma 5.2, Theorem 5.1, and Schwarz’s inequality, it follows that

(6.5) max
1≤i≤N

∣∣∣∣∣Ji(û)− lim sup
T→∞

1

T
E

∫ T

0

L̂(x̂i, ẑ, ûi)dt

∣∣∣∣∣ = O

(
1√
N

)
,
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where

L̂(x̂i, ẑ, ûi) = x̂Ti Qθx̂i − 2(Hẑ + α)TQθx̂i + ‖Hẑ + α‖2Qθ + ‖ûi‖2Rθ .

Let J1(ûi) be the optimal cost of problem (P1). By (4.1), (6.5), and direct computa-
tions, we have

lim sup
T→∞

1

NT

N∑
i=1

E

∫ T

0

L̂(x̂i, ẑ, ûi)dt

=
1

N

N∑
i=1

J1(ûi) + lim sup
T→∞

1

NT

N∑
i=1

E

∫ T

0

2 [(In −H)ẑ − α]
T
QθHx̂idt

+ lim sup
T→∞

1

NT

N∑
i=1

E

∫ T

0

‖Hẑ + α‖2Qθdt

=
1

N

N∑
i=1

J1(ûi) + lim sup
T→∞

1

T
E

∫ T

0

‖Hẑ + α‖2Qθdt

+ lim sup
T→∞

1

T
E

∫ T

0

2[(HTQθ −HTQθH)ẑ −HTQθα]T x̂(N)dt,(6.6)

where ẑ is determined by (5.1). From Schwarz’s inequality, Lemma 5.2, and Theorem
5.1, it follows that∣∣∣∣∣lim sup

T→∞

1

T
E

∫ T

0

[(HTQθ −HTQθH)ẑ −HTQθα]T (x̂(N) − ẑ)dt

∣∣∣∣∣
2

≤ lim sup
T→∞

1

T
E

∫ T

0

‖C1ẑ + C2‖2dt · lim sup
T→∞

1

T
E

∫ T

0

‖x̂(N) − ẑ‖2dt ≤ O(1/N).

This together with (6.6) leads to

lim sup
T→∞

1

NT

N∑
i=1

E

∫ T

0

L̂(x̂i, ẑ, ûi)dt =
1

N

N∑
i=1

J1(ûi)

+ lim sup
T→∞

1

T
E

∫ T

0

[
− ẑTHQ

θ ẑ + ‖α‖2Qθ
]
dt,

which together with Lemma A.1 and Theorem 5.3 gives (6.1).
Denote z̄j(t) = E[ẑ(t)I[θ(t)=j]] and Z̄j(t) = E[ẑ(t)ẑT (t)I[θ(t)=j]]. Then, by the

generalized Itô’s formula [31] we have

dz̄j(t)

dt
= Mj z̄j(t) +

m∑
k=1

λkj z̄k(t) + pj(t)sj(t),

dZ̄j(t)

dt
= MjZ̄j(t) + Z̄j(t)M

T
j +

m∑
k=1

λkjZ̄k(t) + sj(t)z̄
T
j (t) + z̄j(t)s

T
j (t),

where pj(t) = P (θ(t) = j). Noticing that ẑ(0) = Exi(0) = x0, one can get z̄j(0) =
pj(0)x0 and Z̄j(0) = pj(0)x0x

T
0 . If θ(t) is ergodic and the stationary distribution is
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π, then it follows that limt→∞ pj(t) = πj , j = 1, . . . ,m, i.e., for any ε > 0, there exists
T0 such that |pj(t)− πj | < ε, t ≥ T0. Noticing that

Erθ(t) =

m∑
j=1

rj(t)pj(t),

by (6.1) we have (6.4).

Remark 6.1. If for all t ≥ 0, θ(t) ≡ θ, then system (2.1)–(2.2) degenerates to
the (uniform) model in [18]. In this case, the asymptotically optimal cost in (6.1)
coincides with the one given by Theorem 6.2 in [18]. Actually, ẑ in (5.1) plays the
same role as x̄ in [18], since both of them are approximations of x̂(N) in the large
population case.

The above theorem provides an explicit expression of the asymptotically optimal
social cost. In previous works [35, 37], we investigated mean field games with Markov
jump parameters. To make a comparison of the optimal average costs within team
and game problems, we review and unite the previous results on mean field games (see
[35, 37] for details). The dynamics and the cost of each agent are also given by (2.1)
and (2.2). The design of decentralized strategies is implemented as follows. First, the
equation of mean field effect is presumed as

ż(t) = Mθ(t) + sθ(t)(t), z(0) = x0,

where M and s are to be determined. Then, we construct an auxiliary optimal control
problem:

d

(
xi(t)
z(t)

)
=

(
Aθ(t) 0

0 Mθ(t)

)(
xi(t)
z(t)

)
dt+

(
Bθ(t)

0

)
ui(t)dt

+

(
h(t)
sθ(t)(t)

)
dt+

(
Dθ(t)

0

)
dWi(t), 1 ≤ i ≤ N,

Ji(ui) = lim sup
T→∞

1

T
E

∫ T

0

{∥∥∥(I −H)

(
xi(t)
z(t)

)
− α

∥∥∥2

Qθ(t)
+ ‖ui(t)‖2Rθ(t)

}
dt.

By solving the above optimal control problem and using a similar construction as that
in section 4, we get a set of consistency equations:

(6.7)



ĀTj Kj +KjĀj +
∑m
l=1 λjlKl −KjB̄jR

−1
j B̄Tj Kj

+(In −H)TQj(In −H) = 0,
Gj,1 +Gj,2 = Mj ,

drj(t)
dt +GTj rj(t) +

∑m
l=1 λjlrl(t) +Kj

( h(t)
sj(t)

)
− (In −H)TQjα = 0,

h(t)−BjR−1
j B̄Tj rj(t) = sj(t), j = 1, . . . ,m.

Combining [35, Theorem 5] and [37, Theorem 3.1], we have the following result.

Theorem 6.2. For the game problem (2.1)–(2.2), if (A1)–(A2) hold and (6.7)
admits a stabilizing solution, then we have (i) the set of strategies (ûi, 1 ≤ i ≤ N)
given by

ûi(t) = −R−1
θ(t)B

T
θ(t)[Kθ(t),1xi(t) +Kθ(t),2z(t) + rθ(t),1(t)]
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is an ε-Nash equilibrium, where ε = 1/
√
N ; (ii) the optimal cost is given by

lim
N→∞

Ji(û) = lim sup
T→∞

1

T
E

∫ T

0

[
tr(Kθ,1DθD

T
θ ) + 2rTθ (t)[hT (t), sTθ (t)]T

−‖B̄Tθ rθ(t)‖2R−1
θ

+ ‖α‖2Qθ
]
dt.

Furthermore, if θ(t) is an ergodic Markov chain with stationary distribution {πj , j =
1, . . . ,m}, then the optimal cost is given by

lim
N→∞

Ji(û) =

m∑
j=1

πj lim sup
T→∞

1

T

∫ T

0

[
tr(Kj,1DjD

T
j )

+2rTj (t)[hT (t), sTj (t)]T − rTj,1(t)BjR
−1
j BTj rj,1(t) + ‖α‖2Qj

]
dt.

Remark 6.2. The closed-form expressions of optimal average costs in team and
game problems are provided in Theorems 6.1 and 6.2, respectively. The reduction of
the optimal average cost incurred from the game formulation to the team formulation
can be obtained and analyzed by virtue of the closed-form expressions above. From

a formal perspective, the reduction term is lim supT→∞
1
T E

∫ T
0
‖ẑ(t)‖2

HQθ
dt, although

the sets of consistency equations are different (but similar) within different formula-
tions. The difference of optimal average costs in two formulations shows the efficiency
of cooperation in mean field control.

7. Numerical example. In this section, we illustrate the consistency of mean
field approximation and the asymptotical optimality of distributed strategies via a
numerical example. Furthermore, we provide a comparison of the optimal average
costs between team and game problems.

Without loss of generality, we consider the following simple case. Agent i evolves
by

dxi(t) = a(θ(t))xi(t)dt+ (ui(t) + 1)dt+ 0.5dwi(t),

where xi, ui ∈ R, 1 ≤ i ≤ N , and {θ(t)} is a Markov chain taking value in {1, 2} with
the transition rate matrix

Λ =

(
−1 1
1 −1

)
.

{wi(t)} is a sequence of independent Brownian motions. The cost of agent i is de-
scribed by

Ji(u) = lim sup
T→∞

1

T
E

∫ T

0

{
[xi − (hx(N) + α)]2 + u2

i

}
dt.

Take a1 = 0.2, a2 = 0.8, α = 5, h = 0.25. Then the Riccati equation system (4.15)
has the maximal solution k1,1 = 1.4251, k2,1 = 1.8859 and (4.16) has the maximal
solution k1,2 = −0.2012, k2,2 = −0.2161. Take {xi(0)} as a sequence of independent
random variables with the normal distribution N(0, 3). {θ(0)} is a random variable
with P (θ(0) = 1) = 0.5 and P (θ(0) = 2) = 0.5. It can be verified that assumptions
(A1)–(A3) hold.
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Fig. 1. Curves of x(200) and z.

Let r̄1(t) = [r1,1(t), r2,1(t)]T . Then, from (4.23) we have

dr̄1(t)

dt
+

[(
m1 0
0 m2

)
+ Λ

]
r̄1(t)− η̄1(t) = 0,

where m1 = a1 − k1,1 − k1,2 = −1.0239, m2 = a2 − k2,1 − k2,2 = −0.8698, and

η̄1(t) = [(1− h)α− k1,1 − k1,2, (1− h)α− k2,1 − k2,2]T = [2.5261, 2.0802]T .

Noticing that
(
ccm1 0

0 m2

)
+ Λ is stable, and r̄1(t) ∈ Cb([0,∞),Rn), we can get

r̄1(t) = −
∫ ∞

0

exp

[(
m1 0
0 m2

)
t+ Λt

]
η̄1(t)dt = [−2.4435,−2.4194]T .

Thus, from (4.24) we obtain the following distributed strategies:

(7.1) ûi(t) = −
2∑
j=1

I[θ(t)=j](kj,1xi(t) + kj,2z(t) + rj,1(t)), 1 ≤ i ≤ N,

where z satisfies
dz(t)

dt
= mθ(t)z(t) + 1− rθ,1(t), z(0) = x0.

Figure 1 depicts the curves of z∗ and x(N) when the number of agents is 200. It
can be seen from Figure 1 that the curves of z and x(N) coincide well as N = 200,
which illustrates the consistency of mean field approximation. Figure 2 shows the
curve of ε when the number of agents grows from 1 to 200, where

ε(N) =

(
lim sup
T→∞

1

T
E

∫ T

0

∥∥x(N) − z
∥∥2
dt

) 1
2

.

It can be seen that ε is very small when N is 200, which implies that the set of
distributed strategies (7.1) is asymptotically optimal.

By Theorems 6.1 and 6.2, we compute the optimal average costs of team and game
problems within population limit for h = −1.2,−0.8,−0.4,−0.25, 0.25, 0.4, 0.8, 1.2,
respectively. Comparison of both optimal costs is shown in Table 1 and Figure 3 (J1

denotes the optimal cost of the game problem, and J (∞) denotes the optimal cost of
the team problem). It can be seen that the optimal cost of the game problem J1 is
greater than that of the team problem J (∞), especially when the interaction intensity
h is large.
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Table 1
Optimal average costs of game and team problems.

h –1.2 –0.8 –0.4 –0.25 0.25 0.4 0.8 1.2

J1 5.8741 6.8968 8.5641 8.9450 15.3032 18.8444 35.4553 619.2769

J(∞) 5.6397 6.7377 8.5171 8.7822 14.9478 17.6496 26.1194 26.1194
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    −−−−−
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Fig. 3. Curves of J1 and J(∞) with respect to h.

8. Concluding remarks. In this paper, social optima have been investigated in
mean field LQG control problems with Markov jump parameters. By the parametric
approach and state space augmentation, a set of distributed strategies is designed
and further shown to be asymptotically team-optimal. An explicit expression of the
asymptotically optimal social cost is given. The difference of the optimal costs within
team and game formulations can be obtained from the explicit expressions and further
illustrated by a numerical example. The result of this paper can be generalized to
the case where Markov jump parameters are unknown or the impact of private and
public information is included [27]. Also, the model in this paper can be applied to
economic growth or pollution backgrounds.
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Appendix A. Markov jump optimal control with indefinite weight.
Consider

(A.1) dx(t) = Aθ(t)x(t)dt+Bθ(t)u(t)dt+ h(t)dt+Dθ(t)dW (t), t ≥ 0,

where x(t) ∈ Rn, u(t) ∈ Rr, f ∈ Cb([0,∞),Rn), and W (t) is a d-dimensional stan-
dard Brownian motion. The initial value E‖x(0)‖2 < ∞. θ(t) is a continuous-time
Markov chain taking value in {1, 2, . . . ,m} with transition rate matrix Λ = (λij). The
admissible control set is

U =
{
u | u(t) is adapted to σ(x(s), θ(s), s ≤ t), E‖x(T )‖ = o(

√
T )
}
.

Let the cost function be given by

(A.2) J(u) = lim sup
T→∞

1

T
E

∫ T

0

[
xT (t)Qθ(t)x(t)− 2gTθ(t)(t)x(t) + uT (t)Rθ(t)u(t)

]
dt,

where for any i = 1, . . . ,m, Qi is symmetric, Ri > 0, and gi ∈ Cb([0,∞),Rn). Define
a set of coupled AREs,

(A.3) KiAi +ATi Ki +

m∑
j=1

λijKj −KiBiR
−1
i BTi Ki +Qi = 0, i = 1, . . . ,m,

and a set of coupled ODEs,

(A.4)
dri(t)

dt
+GTi ri(t) +

m∑
j=1

λijrj(t) +Kih(t)− gi(t) = 0, i = 1, . . . ,m,

where Gi = Ai −BiR−1
i BTi Ki and the initial condition ri(0) is arbitrarily given.

Lemma A.1. For the optimal control problem (A.1)–(A.2), assume (i) (A.3) has
a symmetric solution such that the system

dy(t) = Gθ(t)y(t)dt

is mean-square stable; (ii) h ∈ Cb([0,∞),Rn) and gi ∈ Cb([0,∞),Rn), i = 1, . . . ,m.
Then we have

(1) there exists a unique set of solutions ri ∈ Cb([0,∞),Rn), i = 1, . . . ,m to (A.4);
(2) the optimal control is û(t) = −R−1

θ(t)B
T
θ(t)[Kθ(t)x(t) + rθ(t)(t)];

(3) the optimal cost is given by

J(û) = lim sup
T→∞

1

T
E

∫ T

0

{
tr(Kθ(t)Dθ(t)D

T
θ(t))

−‖BTθ(t)rθ(t)(t)‖
2
R−1
θ(t)

+ 2rθ(t)(t)h(t)
}
dt.(A.5)

Particularly, if θ(t) is an ergodic Markov chain with stationary distribution {πi, i =
1, . . . ,m}, then the optimal cost J(û) is given by

m∑
i=1

πi lim sup
T→∞

1

T

∫ T

0

{
tr(KiDiD

T
i )− ‖BTi ri(t)‖2R−1

i

+ 2ri(t)h(t)
}
dt.(A.6)
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Proof. We can show part (1) by using the similar argument in [37, Theorem
3.1(iii)]. For part (2) we prove it by using a completion of squares technique. Noticing
that Qi is merely symmetric, the integrand in (A.2) cannot be written in the square
form ‖x− g1‖2Qθ + h1 as in [37]. However, by a similar derivation as in [37, Theorem
3.1] we can get that for u ∈ U ,

J(u)

= lim sup
T→∞

1

T
E{xT (0)Kθ(0)x(0)− xT (T )Kθ(T )x(T ) + 2rTθ(0)(0)x(0)− 2rTθ(T )(T )x(T )}

+ lim sup
T→∞

1

T
E

∫ T

0

{
‖u(t) +R−1

θ(t)B
T
θ(t)[Kθ(t)x(t) + rθ(t)(t)]‖2Rθ(t)

−‖BTθ(t)rθ(t)(t)‖
2
R−1
θ(t)

+ 2rθ(t)(t)h(t) + tr(Kθ(t)Dθ(t)D
T
θ(t))

}
dt

= lim sup
T→∞

1

T
E

∫ T

0

{
‖u(t) +R−1

θ(t)B
T
θ(t)[Kθ(t)x(t) + rθ(t)(t)]‖2Rθ(t)

−‖BTθ(t)rθ(t)(t)‖
2
R−1
θ(t)

+ 2rθ(t)(t)h(t) + tr(Kθ(t)Dθ(t)D
T
θ(t))

}
dt

≥ lim sup
T→∞

1

T
E

∫ T

0

{
tr(Kθ(t)Dθ(t)D

T
θ(t))− ‖B

T
θ(t)rθ(t)(t)‖

2
R−1
θ(t)

+ 2rθ(t)(t)h(t)
}
dt.

The last equality holds if and only if u(t) = û(t)
∆
= −R−1

θ(t)B
T
θ(t)[Kθ(t)x(t) + rθ(t)(t)].

Noticing that under the control û, the system

dy(t) = Gθ(t)y(t)dt

is mean-square stable, we have E‖x(T )‖ = o(
√
T ). Thus, we get û ∈ U , and the

optimal cost is given by (A.5). If θ(t) is ergodic and the stationary distribution is
{πi, i = 1, . . . ,m}, then it follows that limt→∞ P (θ(t) = i) = πi, i = 1, . . . ,m. Since
the cost is the infinite-time average, the optimal cost is given by (A.6).

Appendix B. Proofs of Theorems 4.2 and 4.3.

Proof of Theorem 4.2. Noticing that Gj=Āj − B̄jR
−1
j B̄Tj Kj , it follows by the

matrix block multiplication that

(B.1) Gj =

(
Aj −BjR−1

j BTj Kj,1 −BjR−1
j BTj Kj,2

0 Aj −BjR−1
j BTj (Kj,1 +Kj,2)

)
.

Then Gj,1 = Aj − BjR
−1
j BTj Kj,1, Gj,2 = −BjR−1

j BTj Kj,2, Gj,4 = Mj = Aj −
BjR

−1
j BTj (Kj,1 +Kj,2). Since the system (4.19) is mean-square stable, there exists a

unique set of positive definite matrices Pj,1, j = 1, . . . ,m, such that

(B.2) GTj,1Pj,1 + Pj,1Gj,1 +

m∑
k=1

λjkPk,1 = −In.

Since the system (4.21) is mean-square stable, there also exists a unique set of positive
definite matrices Pj,2, j = 1, . . . ,m, such that

(B.3) GTj,4Pj,2 + Pj,2Gj,4 +

m∑
k=1

λjkPk,2 = −In −GTj,2P 2
j,1Gj,2.
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Let

Pj =

(
Pj,1 0

0 Pj,2

)
, j = 1, . . . ,m.

Then, Pj is positive-definite. From (B.2) and (B.3) it follows that

(B.4) GTj Pj + PjGj +

m∑
k=1

λjkPk =

(
−In Pj,1Gj,2

GTj,2Pj,1 −In −GTj,2P 2
j,1Gj,2

)
.

Noticing(
In 0

GTj,2Pj,1 In

)(
−In Pj,1Gj,2

GTj,2Pj,1 −In −GTj,2P 2
j,1Gj,2

)(
In Pj,1Gj,2
0 In

)
=

(
−In 0

0 −In

)
,

we get that (
−In Pj,1Gj,2

GTj,2Pj,1 −In −GTj,2P 2
j,1Gj,2

)
is negative definite. By (B.4) and Remark 4.1, the system (4.12) is stable in the
mean-square sense.

Proof of Theorem 4.3. From (4.14) and (B.1), it follows that

(B.5) GTj − Sj =

(
Mj Gj,5
0 Mj

)T
,

where Gj,5 = −BjR−1
j BTj (Kj,2 +Kj,4). Note that Mj = Aj−BjR−1

j BTj (Kj,1 +Kj,2).
Since the system (4.21) is mean-square stable, there exist positive matrices Pj,3 and
Pj,4 such that the following equations hold:

(B.6) MT
j Pj,3 + Pj,3Mj +

m∑
k=1

λjkPk,3 = −In,

(B.7) MT
j Pj,4 + Pj,4Mj +

m∑
k=1

λjkPk,4 = −In −GTj,5P 2
j,3Gj,5.

Let

P̃j =

(
Pj,3 0

0 Pj,4

)
, j = 1, . . . ,m.

From (B.5)–(B.7) it follows that

(Gj − STj )T P̃j + P̃j(Gj − STj ) +

m∑
k=1

λjkP̃k =

(
−In Pj,3Gj,5

GTj,5Pj,3 −In −GTj,5P 2
j,3Gj,5

)
.

By the matrix’s elementary transformation, we know(
−In Pj,3Gj,5

GTj,5Pj,3 −In −GTj,5P 2
j,3Gj,5

)
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is negative definite. Thus, it follows from Remark 4.1 that

(B.8) dy(t) = (Gθ(t) − STθ(t))y(t)dt

is mean-square stable.
Let ϕj(t) = I[θ(t)=j]. Then, from [24] we have

ϕj(t) = ϕj(0) +

m∑
k=1

∫ t

0

λkjϕk(s)ds+mj(t), j = 1, . . . , m,

where mj(t) is a mean-square integrable martingale. Using Itô’s formula, we can
obtain

y(t)ϕj(t) =

∫ t

0

[Gθ(s) − STθ(s)]ϕj(s)y(s)ds

+

∫ t

0

y(s)

m∑
k=1

λkjϕk(s)ds+

∫ t

0

y(s)dmj(s).(B.9)

Let Yi(t) = E(y(t)ϕi(t)) and Y (t) = (Y T1 (t),. . . , Y Tm (t))T . Then, by taking expecta-
tions on both sides of (B.9), we have

Yi(t) =

∫ t

0

(Gi − STi )Yi(s)ds+

∫ t

0

m∑
j=1

λjiYj(s)ds,

i.e.,

(B.10)
dY (t)

dt
= (G− ST + ΛT ⊗ I2n)Y (t),

where G = diag{G1, . . . , Gm} and S = diag{S1, . . . , Sm}. Since the system (B.8) is
mean-square stable, the system (B.10) is asymptotically stable, which implies that
G− ST + ΛT ⊗ I2n is stable.

Let
r(t) = [rT1 (t), . . . , rTm(t)]T ,

V = G− ST + ΛT ⊗ I2n,

η(t) =
[
(αTQ1(In −H), 0)− (hT (t), hT (t))KT

1 , . . . ,

(αTQm(In −H), 0)− (hT (t), hT (t))KT
m

]T
.

Then, (4.23) can be written as

dr(t)

dt
= −V T r(t) + η(t).

The general solution of this equation can be expressed as

r(t) = e−V
T t

[
r(0) +

∫ t

0

eV
T sη(s)ds

]
.

Since V T is stable and η(t) ∈ Cb([0,∞),R2mn), when r(0) = −
∫∞

0
eV

T sη(s)ds
4
=

r∗(0), we have

r∗(t) = −
∫ ∞
t

eV
T (s−t)η(s)ds ∈ Cb([0,∞),R2mn).
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When the perturbation of the initial value ∆r(0) 6= 0, the corresponding solution is

given by r(t) = e−V
T t∆r(0) + r∗(t). Since all the eigenvalues of −V T have positive

real parts, and r∗(t) ∈ Cb([0,∞),R2mn), then r(t) is unbounded. Hence, (4.23) admits
a unique solution in Cb([0,∞),R2mn).

Appendix C. Proof of Theorems 5.1 and 5.3.

Proof of Theorem 5.1. Let x̄i(t) = (
x̂i(t)
ẑ(t)

), i = 1, . . . , N . Then, (5.1) can be

written as

dx̄i(t) = Gθ(t)x̄i(t)dt+

(
sθ(t)(t)
sθ(t)(t)

)
dt+

(
Dθ(t)

0

)
dWi(t).(C.1)

From (4.10) and Theorem 4.3, it follows that

max
1≤j≤m

‖sj(t)‖∞ ≤ ‖h‖∞ + max
1≤j≤m

‖BjR−1
j BTj ‖‖rj,1(t)‖∞

∆
= Cs.

Let V (j, x̄) = x̄TPj x̄, j = 1, . . . ,m, x̄ ∈ R2n, and Ai denote the infinitesimal generator
of {θ(t), x̄i(t)} in (C.1). Then, it follows from (B.4) that

AiV (j, x̄)

= lim
s→0

1

s

{
E[V (θ(t+ s), x̄i(t+ s))|θ(t) = j, x̄i(t) = x̄]− V (j, x̄)

}
=
∂V

∂x̄
(j, x̄)[Gj x̄+ (sTj (t) sTj (t))T ] +

m∑
k=1

λjkV (k, x̄) + tr[(DT
j 0)Pj(D

T
j 0)T ]

= x̄T (GTj Pj + PjGj +

m∑
k=1

λjkPk)x̄− 2x̄TPj(s
T
j (t) sTj (t))T + tr(DT

j Pj,1Dj)

= − x̄T N̄j x̄− 2x̄TPj(s
T
j (t) sTj (t))T + tr(DT

j Pj,1Dj),

where N̄j = (
In −Pj,1Gj,2

−GTj,2Pj,1 In+GTj,2P
2
j,1Gj,2

) > 0. By Dynkin’s formula [29], we have

dV (θ(t), x̄i(t))

dt
= EAiV (θ(t), x̄i(t))

=− E[x̄T (t)Nθ(t)x̄i(t)] + tr(DT
θ(t)Pθ(t),1Dθ(t))

− 2x̄T (t)Pθ(t)
(
sTθ(t)(t) s

T
θ(t)(t)

)T
≤− a1EV (θ(t), x̄i(t)) + tr(DT

θ(t)Pθ(t),1Dθ(t))

+ 2 max
1≤j≤m

√
2EV (θ(t), x̄i(t))‖Pθ(t)‖‖s(θ(t), t)‖

≤ − 1

2
a1EV (θ(t), x̄i(t)) + b1,

where

a1 = min
1≤j≤m

λmin(N̄j)

λmax(Pj)
,

b1 =4 max
1≤j≤m

λmax(Pj)
(
‖BjR−1

j BTj ‖Cs + ‖h‖∞
)2
/a1 + max

1≤j≤m
tr(DT

j Pj,1Dj).
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This together with the comparison theorem implies that

EV (θ(t), x̄i(t)) ≤ EV (θ(0), x̄i(0))e−
1
2a1t +

2b1
a1

(1− e− 1
2a1t).

Thus, we have

E[‖x̂i(t)‖2 + ‖ẑ(t)‖2] ≤ EV (θ(t), x̄i(t))

min1≤j≤m(λmin(Pj))

≤
maxj λmax(Pj)

(
max1≤i≤N E‖x̄i(0)‖2 + ‖x0‖2

)
+ 2b1/a1

min1≤j≤m(λmin(Pj))

4
= C1,(C.2)

which together with (4.24) implies

(C.3) E‖ûi(t)‖2 ≤ max
1≤j≤m

‖R−1
j Bj‖2

[
4 max

1≤j≤m
(‖Kj,1‖2 + ‖Kj,2‖2)C1 + 2‖r‖2∞

]
.

Note that Cs and C1 are independent of i,N , and take

C0 = C1 + max
1≤j≤m

‖R−1
j Bj‖2

[
4 max

1≤j≤m
(‖Kj,1‖2 + ‖Kj,2‖2)C1 + 2‖r‖2∞

]
.

Then, by (C.2) and (C.3) we have (5.2).

To prove Theorem 5.3, we present an auxiliary lemma, which can be shown by a
similar argument for proving Lemma C.1 in [18], and hence the proof is omitted here.

Lemma C.1. If (A1)–(A3) hold, and I − H is nonsingular, then J (N)(u) < ∞
implies

lim sup
T→∞

1

T
E

∫ T

0

‖xi(t)‖2 + ‖x(N)(t)‖2 + ‖ui(t)‖2dt <∞, 1 ≤ i ≤ N.

Proof of Theorem 5.3. Notice infuj∈Uc,j=1,...,N Ji(u) ≤ Ji(û). Then, to obtain
(5.8), we need only to prove that for any

u ∈ U ′c
∆
= {ui ∈ Uc, i = 1, . . . , N |J (N)(u) ≤ J (N)(û)},

the following inequality holds:

(C.4) J (N)(u) ≥ J (N)(û)− ε.

By Lemma C.1, we have for u ∈ U ′c,

(C.5) lim sup
T→∞

1

T
E

∫ T

0

‖xi‖2 + ‖x(N)‖2 + ‖ui‖2dt <∞.

Let x̃i = xi − x̂i and ũi = ui +R−1
θ BTθ (Kθ,1xi +Kθ,2z + rθ,1). Then, it follows from

(5.1) and (5.2) that

dx̃i = Gθ,1x̃i +Bθũi,

lim sup
T→∞

1

T
E

∫ T

0

‖x̃i‖2 + ‖ũi‖2dt <∞.(C.6)
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Let x̂(N) = 1/N
∑N
j=1 x̂j and x̃(N) = 1/N

∑N
j=1 x̃j . Then, we have

NJ (N)(u)

=

N∑
i=1

lim sup
T→∞

1

T
E

∫ T

0

‖x̂i −Hx̂(N) − α+ x̃i −Hx̃(N)‖2Qθ

+‖ûi + ũi −R−1
θ BTθ Kθ,1x̃i‖2Rθdt

=

N∑
i=1

(
Ji(û) + J̃i(ũ) + 2Ii

)
,(C.7)

where

J̃i(ũ)
∆
= lim sup

T→∞

1

T
E

∫ T

0

‖x̃i −Hx̃(N)‖2Qθ + ‖ũi −R−1
θ BTθ Kθ,1x̃i‖2Rθdt,

Ii
∆
= lim sup

T→∞

1

T
E

∫ T

0

(
x̂i −Hx̂(N) − α

)T
Qθ
(
x̃i −Hx̃(N)

)
+ûTi Rθ(ũi −R−1

θ BTθ Kθ,1x̃i)dt.

Notice J̃i(ũ) ≥ 0. To complete the proof, we need only to show
∣∣ 1
N

∑N
i=1 Ii

∣∣ ≤ ε
2 .

To obtain
∣∣ 1
N

∑N
i=1 Ii

∣∣ ≤ ε
2 , we first make the following deformation:

N∑
i=1

(
x̂i −Hx̂(N) − α

)T
Qθ
(
x̃i −Hx̃(N)

)
=

N∑
i=1

(
x̂i −Hz − α

)T
Qθ
(
x̃i −Hx̃(N)

)
−

N∑
i=1

(x̂(N) − z)HTQθ(x̃i −Hx̃(N))

=

N∑
i=1

(
x̂i −Hz − α

)T
Qθx̃i −

(
x̂(N) −Hz − α

)T
QθH

N∑
j=1

x̃j

−N (x̂(N) − z)T (HTQθ −HTQθH)x̃(N)

=

N∑
i=1

x̃Ti
[
Qθx̂i − (QθH +HTQθ −HTQθH)z −Qθα+HTQθα

]
−N (x̂(N) − z)T (QθH +HTQθ −HTQθH)x̃(N).(C.8)

Notice

ûTi Rθ(ũi −R−1
θ BTθ Kθ,1x̃i) = (Kθ,1x̂i +Kθ,2z + rθ,1)TBθ(R

−1
θ BTθ Kθ,1x̃i − ũi).

Then, by (C.8) we get
N∑
i=1

Ii =

N∑
i=1

βi + ζ,

where

βi = lim sup
T→∞

1

T
E

∫ T

0

x̃Ti
[
Qθx̂i − (QθH +HTQθ −HTQθH)z −Qθα+HTQθα

]
+ (Kθ,1x̂i +Kθ,2z + rθ,1)TBθ(R

−1
θ BTθ Kθ,1x̃i − ũi)dt,

ζ = lim sup
T→∞

1

T
E

∫ T

0

N(z − x̂(N))T (QθH +HTQθ −HTQθH)x̃(N)dt.
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Applying the generalized Itô’s formula [31] to x̃Ti (Kθ,1x̂i + Kθ,2z + rθ,1), from (4.5),
(4.15), and (4.16) we obtain

E [x̃Ti (T )(Kθ,1x̂i(T ) +Kθ,2z(T ) + rθ,1(T ))]

= E

∫ T

0

x̃Ti
[
Qθx̂i − (QθH +HTQθ −HTQθH)z

−Qθα+HTQθα
]

+ (Kθ,1x̂i +Kθ,2z + rθ,1)TBθ(R
−1
θ BTθ Kθ,1x̃i − ũi)dt.(C.9)

Let Ṽ1(j, x̃) = x̃TPj,1x̃, j = 1, . . . ,m, x̃ ∈ Rn. Then, by (B.2) and (C.5) there exists
a2 > 0 and b2 > 0 such that

dEṼ1(θ(t), x̃i(t))

dt
≤ −a2EṼ1(θ(t), x̃i(t)) + 2b2ũi(t)

√
Ṽ1(θ(t), x̃i(t)),

and hence,

EṼ1(θ(t), x̃i(t)) ≤
[∫ t

0

e−
a2
2 (t−s)b2ui(s)ds

]2

≤
∫ t

0

e−a2(t−s)b22ds ·
∫ t

0

‖ui(s)‖2ds ≤ C
∫ t

0

‖ui(s)‖2ds,

which together with (C.6) implies

(C.10) E‖x̃i(T )‖2 ≤ C
∫ T

0

‖ui(s)‖2 ≤ O(T ).

Moreover, it follows from (C.2) that

E‖Kθ,1x̂i(T ) +Kθ,2z(T )‖2 ≤ C.

This together with (C.9), (C.10), and rθ,1 ∈ Cb([0,∞),Rn) gives

βi ≤ lim sup
T→∞

1

T

{
E‖x̃i(T )‖2E‖Kθ,1x̂i(T ) +Kθ,2z(T ) + rθ,1(T )‖2

}1/2

≤ lim sup
T→∞

O(
1√
T

) = 0, i = 1, 2, . . . , N.

On the other hand, by Theorem 5.1 we can get directly

lim sup
T→∞

1

T
E

∫ T

0

‖x̂(N)‖2dt ≤ C0.

Moreover, it follows from Lemma C.1 that lim supT→∞
1
T E

∫ T
0
‖x̃(N)‖2dt ≤ C. This

together with the Schwarz’s inequality and Lemma 5.2 renders

|ζ| ≤ NC
( 1

T
E

∫ T

0

‖z − x̂N‖2dt
)1/2( 1

T
E

∫ T

0

‖x̃N‖2dt
)1/2

≤ C
√
N.

Hence, ∣∣∣∣∣ 1

N

N∑
i=1

Ii

∣∣∣∣∣ =
1

N

(
N∑
i=1

βi + ζ

)
≤ ε = O

(
1√
N

)
.
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